2. SCIENTIFIC SECTION PREFERENCE (REQUIRED):

Review the Scientific Section Descriptions. Select and enter the two-letter Code for the one (1) Section best suited to review your abstract

3. \quad PRESENTATION	PREFERENCE	
(REQUIRED) Check one:		
\mathbf{X}	Paper	
\square	Poster	
\square	FAST Paper	

4. The signature of the First (Presenting) Author (REQUIRED) acting as the authorized agent for all authors, hereby certifies that any research reported was conducted in compliance with the Declaration of Helsinki and the 'UNIFESP Ethical Committee

Bruno M Fontes

```
Scientific Section Descriptions (two-letter code):
(BE) OCULAR BIOENGINEERING
(CO) CORNEA AND EXTERNAL DISEASE
(CA) CATARACT
(EF) ELECTROPHYSIOLOGY
(EP) EPIDEMIOLOGY
(EX) EXPERIMENTAL SURGERY
GL) GLAUCOMA
(LA) LABORATORY
(LS) LACRIMAL SYSTEM
(LV) LOW VISION
(NO) NEURO-OPHTHALMOLOGY OR) ORBIT
(PL) OCULAR PLASTIC SURGERY
(PH) PHARMACOLOGY
(RE) RETINA AND VITREOUS
(RS) REFRACTIVE SURGERY
(RX) REFRACTION-CONTACT LENSES
ST) STRABISMUS
(TR) TRAUMA
(TU) TUMORS AND PATHOLOGY UV) UVEITIS
(US) OCULAR ULTRASOUND
```

Deadline: Oct 12, 2009

FORMAT:

Abstract should contain:
Title
Author, Co-authors (maximum 6), Purpose, Methods, Results, Conclusion.

Poster guidelines:
ARVO Abstract Book ($1.10 \times 1.70 \mathrm{~m}$)
2. FIRST (PRESENTING) AUTHOR (REQUIRED)

Must be author listed first in body of abstract
() R1 () R2 () R3
() PG0 (X) PG1
() Estagiário
() Tecnólogo
() PIBIC

Fontes	Bruno	Machado.
Last Name	First	Middle

REFRACTIVE SURGERY
0123/06
Service (sector)
№ CEP

CORNEAL BIOMECHANICAL METRICS AND ANTERIOR SEGMENT PARAMETERS IN MILD KERATOCONUS

BRUNO M. FONTES, RENATO AMBRÓSIO JR, DANIELA JARDIM, GUILLERMO C. VELARDE, WALTON NOSÉ

PURPOSE: To evaluate and compare corneal hysteresis (CH), corneal resistance factor (CRF), spherical equivalent (SE), average central keratometry (K-Ave), corneal astigmatism (CA), corneal volume (CV), anterior chamber depth (AC depth) and central corneal thickness (CCT) in patients with mild keratoconus and controls. A secondary goal was to estimate CH's and CRF's sensitivity and specificity in discriminating mild keratoconus from healthy corneas.
METHODS: Case-control study. Patients were submitted to complete clinical eye examination, corneal topography (Humphrey ATLAS), tomography (Pentacam) and biomechanical (Ocular Response Analyzer) evaluation. Receiver operating characteristic (ROC) curve was used to identify the cutoff point to maximize sensitivity and specificity in discriminating mild keratoconus from normal corneas.
RESULTS: Sixty-three eyes (forty patients) with mild keratoconus (Group 1), and eighty eyes from forty sex and age-matched controls (Group 2).

SE was-3.55 ± 2.87 Diopters (D) in Group 1 and $-1.46 \pm 3.09 \mathrm{D}$ in Group 2; $\mathrm{p}=0$. K-Ave was $45.09 \pm 2.24 \mathrm{D}$ in Group 1 and $43.24 \pm 1.54 \mathrm{D}$ in Group 2; $\mathrm{p}=0$. CA was $3.15 \pm 1.87 \mathrm{D}$ in Group 1 and $1.07 \pm 0.83 \mathrm{D}$ in Group 2; $\mathrm{p}=0$. CV was $57.3 \pm 2.12 \mathrm{~mm}^{3}$ in Group 1 and $60.86 \pm 3.39 \mathrm{~mm}^{3}$ in Group 2; $\mathrm{p}=0$. AC depth was $3.19 \pm 0.35 \mathrm{~mm}$ in Group 1 and $3.05 \pm 0.43 \mathrm{~mm}$ in Group 2; $\mathrm{p}=0.0416$. CCT was $503 \pm 34.15 \mu \mathrm{~m}$ in Group 1 and $544.71 \pm 35.89 \mu \mathrm{~m}$ in Group2; $\mathrm{p}=0$. CH was $8.50 \pm 1.36 \mathrm{mmHg}$ in Group 1, and $10.17 \pm 1.79 \mathrm{mmHg}$ in Group 2; $\mathrm{p}=0$. CRF was $7.85 \pm 1.49 \mathrm{mmHg}$ in Group 1, and $10.13 \pm 2.0 \mathrm{mmHg}$ in Group 2; $\mathrm{p}=0$. ROC curve analyses showed poor overall predictive accuracy of CH (cutoff point 9.64 mmHg , sensitivity of 87%, specificity of 65% and test accuracy of 74.83%) and CRF (cutoff point 9.60 mmHg , sensitivity of 90.5%, specificity of 66% and test accuracy of 76.97%) in detecting mild keratoconus.
CONCLUSION: CH, CRF, CV and CCT were statistically lower, while SE, KAve, CA and AC depth values were statistically higher in mild keratoconus. CH and CRF presented low accuracy in discriminating mild keratoconus from normal corneas.

Keywords: keratoconus, corneal biomechanics, corneal hysteresis

